
STATISTICS IN MEDICINE
Statist. Med. 2008; 27:3430–3441
Published online 8 January 2008 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sim.3188

Modulation models for seasonal time series and incidence tables

Paul H. C. Eilers1, Jutta Gampe2, Brian D. Marx3 and Roland Rau4,∗,†

1Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands
2Max Planck Institute for Demographic Research, Rostock, Germany

3Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, U.S.A.
4Terry Sanford Institute of Public Policy, Duke University, Durham, NC, U.S.A.

SUMMARY

We model monthly disease counts on an age–time grid using the two-dimensional varying-coefficient
Poisson regression. Since the marginal profile of counts shows a very strong and varying annual cycle,
sine and cosine regressors model periodicity, but their coefficients are allowed to vary smoothly over the
age and time plane. The coefficient surfaces are estimated using a relatively large tensor product B-spline
basis. Smoothness is tuned using difference penalties on the rows and columns of the tensor product
coefficients. Heavy over-dispersion occurs, making it impossible to use Akaike’s information criterion or
Bayesian information criterion based on a Poisson likelihood. It is handled by selective weighting of part
of the data and by the use of extended quasi-likelihood. Very efficient computation is achieved with fast
array algorithms. The model is applied to monthly deaths due to respiratory diseases, for U.S. females
during 1959–1998 and for ages 51–100. Copyright q 2008 John Wiley & Sons, Ltd.

KEY WORDS: generalized linear array models; over-dispersion; P-splines; tensor product

1. INTRODUCTION

Many disease-related events reveal considerable seasonal variation, mostly striking harder in winter
than in summer. The size of this seasonal effect may depend on the age and gender of the victims
as well as on the type of disease. In a seasonal incidence table, one that presents event counts with
a time precision of months or quarters and age in years, we will see clear ripples with a period of
one year. An example is shown in Figure 1 for females of ages 51–100 in the United States who
died of respiratory diseases during 1959–1998. The top panel shows the raw counts and can also
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Figure 1. Image plot of death counts due to respiratory diseases, U.S. females, ages 51–100
during years 1959–1998 (top) and the marginal plot of monthly totals (bottom) reflecting strong

and variable seasonality as well as a large trend.

be viewed as an image of a flattened large contingency table of monthly death counts with 24 000
cells (50 ages×40 years×12 months). For fixed year, we generally find that the death counts
increase with age, until approximately 85, following the typical density of deaths from human
populations. Deaths from respiratory diseases are influenced not only by lifestyle factors such as
smoking but also by seasonally fluctuating forces such as the climate and air pollution. Figure 1
(bottom panel) shows the monthly totals, aggregated over all ages, to visualize marginal seasonal
variation and in fact shows very strong and varying cyclical behavior due to seasonal effects.

It is of interest to quantify the character and the strength of such seasonal patterns. This includes
the identification of the peak season and whether it is stable across ages and years, and also
whether (relative) seasonal amplitudes change over time or differ among age-groups. Comparisons
of different diseases or causes of death may also be of interest. In this paper, we present a very
general model to give the answers. We generalize the work of Gampe and Rau [1], who presented
modulation models for demographic time series.

First we describe our data in Section 2. We then start modeling in Section 3, by revisiting the
one-dimensional modulation model for a time series of counts, and the use of P-splines in this
context. When tuning the smoothness parameters we encounter heavy over-dispersion; we handle
it with selective weighting and the use of quasi-likelihood instead of a Poisson model. In Section 4,
we extend the model to incidence data, allowing the amplitude of the seasonal components to vary
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both with time and age. There we also sketch how recently developed array methods [2] allow
very efficient computation. We illustrate the use of the model with data from the U.S. in Section 5,
finishing with a Discussion.

2. DESCRIPTION OF THE DATA

We are using the ‘Mortality Detail Files’ for the United States for the years 1959–1998. They have
been obtained from the Population, Policy, and Aging Research Center (PPARC) at Duke University
for the years 1959–1967 and downloaded from the Inter-university Consortium for Political and
Social Research (ICPSR) at the University of Michigan http://www.icpsr.umich.edu/
for the remainder of years (ICPSR Study 7632). The original collection of the data has been
conducted by the National Center for Health Statistics.

The data record every single individual death by month and year of death, sex, age at death,
cause of death and numerous other variables. Cause of death has been coded using the various
revisions of the ‘International Classification of Diseases’ (ICD). In this paper we restrict ourselves
to the analysis of ‘diseases of the respiratory system’, which constitute about 7 per cent of all
causes of death for the entire observation period. Besides pneumonia, the major cause of death
in this group, diseases such as asthma, influenza, and bronchitis belong to this category as well.
Previous studies have shown the strong seasonal pattern of respiratory diseases, which supports
the choice of this category of disease to serve as an illustrative example [3–5]. Table I gives an
overview of the years and ICD codes used to extract deaths from respiratory diseases correctly.

3. THE MODULATION MODEL IN ONE DIMENSION

In Figure 1, we see strong (and varying) cyclical behavior, and we choose to model such seasonality
using sine and cosine functions. In one dimension, a modulation model for the expected values �t
for the observed series of counts yt has the following structure:

log(�t )= log(et )+vt + ft cos(�t)+gt sin(�t) (1)

where t=1, . . . ,T . Here �=2�/p, where p is the period (e.g. p=12 when time is given in months
and p=4 when it is given in quarters). The smooth trend is represented by v, while f and g are
smooth series that describe the local amplitudes of the cosine and sine waves. The model allows
for exposures e, when the objective is to model mortality rates, instead of raw counts (in which
case et ≡1). Gampe and Rau [1] and Rau [6] compared this model with a number of established
models for seasonal data and found it to be superior, especially when seasonal patterns change
over time.

Table I. ICD coding of respiratory diseases.

Revision Years ICD codes used

7 1959–1967 241, 470–527
8 1968–1978 460–519
9 1979–1998 460–519
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3.1. Splines and penalties

Technically, (1) is a combination of a varying-coefficient model (VCM), for f and g, and a
generalized additive model (GAM), for v. VCMs allow the regression coefficients to vary smoothly
with another variable and were first proposed by Hastie and Tibshirani [7]. GAMs were also
proposed by Hastie and Tibshirani [8, 9]. VCMs and GAMs can be estimated by ‘backfitting’; an
iterative procedure that improves v, f and g in turn. Eilers and Marx [10] proposed a non-iterative
procedure, based on P-splines [11], which they used to model seasonal counts. The P-spline
approach is not only more elegant than backfitting but also computationally more efficient and
offers complete control over convergence. It also allows straightforward computation of error bands
and Akaike’s information criterion (AIC) to optimize the amount of smoothing.

One-dimensional P-spline VCMs and GAMs use B-spline bases to model series such as v, f
and g. The bases are ‘rich’, in the sense that they allow far more flexibility than needed. To increase
smoothness, different penalties on the B-spline coefficients are introduced. Only the weights of
the penalties are used to tune the model to the data, avoiding discussions about the number and
placement of the knots of the equally spaced B-splines.

Now we will discuss the details of implementing the modulation model with P-splines. We start
from the basis matrix B=[bt j ]=[Bj (t)], where t is the time index of the observations, t=1, . . . ,T ,
and j , j =1, . . . , J , indexes the B-splines. Figure 2 shows a basis with 13 cubic B-splines (some of
them only partially visible). A smooth trend function is approximated and constructed by scaling
and adding the B-splines: vt =∑

j � j B j (t) or v= B� in matrix–vector notation.
The modulation series f and g are constructed in the same way: f = B� and g= B�. The

modulated series can be constructed directly if we scale the rows of the B-spline basis using
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Figure 2. Illustration of a basis consisting of 13 cubic B-splines. The domain is divided into 10 regions,
between knots. In each region, four B-spline segments are non-zero.
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element-wise multiplication:

ht = ft cos(�t)=cos(�t)
∑

j
bt j� j (2)

This can be expressed in matrix–vector notation if we introduce the matrix C=diag{cos(�t)}:
h=CB�. In a similar way, we construct the matrix SB with S=diag{sin(�t)}). Expressing the
smooth ‘intercept’ as v= B�, the model can now be expressed as

log(�)= log e+B�+CB�+SB�=� (3)

a generalized additive model with linear predictor �.
We minimize the penalized Poisson deviance

d∗(y;�)=2
T∑

t=1
yt log(yt/�t )+�1‖D�‖2+�2‖D�‖2+�2‖D�‖2 (4)

Here D is a (J−2)× J matrix that forms second-order differences of a J -vector. If the coefficients �
show relatively strong variation, their second differences D� will be relatively large and ‖D�‖2
will be a large number. In (4) it functions as a penalty that directly imposes smoothness on �. The
positive penalty hyper-parameter �1 balances smoothness against fit to the data. The penalties on
� and � operate in the same way. We allow different penalty weights for trend (�1) and modulation
functions (�2).

Dropping the offset loge from now on, to simplify notation, the model in (3) can be expressed as

�=[B|CB|SB][�′|�′|�′]′ =Bh (5)

The penalties can be represented as h′Ph with the block-diagonal matrix P=�⊗D′D and �=
diag(�1,�2,�2). We use the boldface notation only to emphasize which matrices (B and P) and
vector (h) refer to the compound basis for trend and amplitudes of cosine and sine.

To minimize the penalized deviance, the familiar iterated GLM scoring algorithm is being used.

(B′M̃B+P)h=B′(y− �̃)+B′M̃Bh̃ (6)

where M=diag(�) and a tilde, as in h̃ indicates an approximation to the solution. As can be seen,
the penalties introduce only slight changes. Details are presented by Eilers and Marx [10].

3.2. Tuning the smoothness parameters

We have two tuning parameters, �1 and �2, for the smoothness of the model components. Although
playing with them and looking at the resulting model fits are instructive, it is desirable to have a
more or less objective procedure to set their values. Initially we measured model performance by
AIC, which is a compromise between goodness of fit and model complexity and is defined as

AIC=d(y;�)+2ED=d(y;�)+2trace(H) (7)

where ED is the effective model dimension and trace(H) approximates it. See Hastie and
Tibshirani [9] for a discussion of effective dimensions and approximations. Alternative definitions
involve H2, computation of which is very unattractive if H is large. For one-dimensional data
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this is not a real problem, but we will encounter a matrix with 24 000 rows and columns in the
following section. Upon convergence, the matrix H is the effective ‘hat’ matrix:

H= M̂1/2B(B′M̂B+P)−1B′M̂1/2 (8)

It is a large matrix, with T rows and T columns. We only need the trace; hence, it is more efficient
to use cyclical permutation:

ED= trace(H)= trace[B′M̂B(B′M̂B+P)−1] (9)

where only a matrix of size J× J is computed.
The original idea was to search (using a linear grid on a log scale) for a reasonable set of �’s

by monitoring AIC and choosing �’s with minimum AIC. Unfortunately, our data show severe
over-dispersion. This is not a problem for estimating the trend and modulation surfaces for given
values of the penalty parameters. However, it makes it impossible to optimize �’s using AIC based
on a Poisson likelihood. First we give a quick impression of the size of the over-dispersion. Then
we describe an effective combination of selective weights and quasi-likelihood.

For Poisson-distributed data, the deviance would approximately equal the effective degrees of
freedom, that is, the number of observations (T ) minus the effective model dimension (ED).
However, we find values of d(y;�)/(T −ED) of the order of 100 and higher. Separate calculations
for the 12 months lead to values in the range from 10 to more than 100, the largest numbers
occurring in winter (December–March). We call these the winter spikes. Flu epidemics and other
cold-related infections occur mainly in these months and might be a major, but not the only,
component. The severity of the spikes changes strongly from year to year; hence, we have here
an obvious source of over-dispersion.

Catching individual winter spikes is not the purpose of analysis, rather we are interested whether
long-term trends in seasonal fluctuations of death counts exist. Therefore, we choose to ignore
them, by giving zero weights to the months December–March. The remaining eight months carry
enough information to reliably estimate the model. As a bonus we hope to estimate the size of the
epidemics (as the difference between observations and model-interpolated values) more reliably,
because they are not allowed to increase the trend or the amplitude of the seasonal components.
We will return to this issue in the Discussion.

This strategy reduces over-dispersion but does not eliminate it. Therefore, instead of the Poisson
likelihood, we switch to the extended (log-)quasi-likelihood [12]:

Q(y;�)=d(y;	)/
+T log
 (10)

where 
 is the over-dispersion parameter, which is estimated as 
̂=d(y;�)/(T −ED). With this
modification, we compute a ‘quasi-AIC’ (QIC), as

QIC=Q(y;�)+2ED=T +ED+T log 
̂ (11)

Plate 1 shows the fit of the model to monthly totals of deaths counts of females (ages 51–100)
caused by respiratory diseases. The upper panel shows the data: the trend function v and the fitted
values �̂. The lower panel shows the ratios y/�̂, the modulated component ft cos(�t)+gt sin(�t)
and the combined amplitude �=√

f 2+g2.
This is a presentation on a logarithmic scale, which is natural, because we are modeling the

logarithms of the expected values. On a linear scale, e2� might be interesting: it is approximately
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the ratio between the nearest peak and the nearest valley of the seasonal component. As we can
see in Plate 1 (accounting for the 10-based logarithms), � varies roughly between 0.1 and 0.25.
Accordingly the peak-to-trough ratio varies between approximately 1.25 and 1.65.

The model uses 23 cubic P-splines (20 interior knots with cubic B-splines), with �1=102.8 for
trend and �2=101.6 for the seasonal component. These values were found after a search on a grid
with steps of 0.2 on the log (base 10) scale.

4. MODULATION MODELS FOR INCIDENCE TABLES

We now generalize the modulation model to a two-dimensional table of counts Y =[yta], indexed
by both time, t=1, . . . ,T , and age a=1, . . . , A. Again we consider the Poisson regression using
a log link function

log(�ta)= log(eta)+vta+ fta cos(�t)+gta sin(�t)=�ta (12)

with �ta =E(yta). In case that age- and time-specific information on exposures eta is available,
it is included via an offset-term log(eta). Otherwise this term is dropped from (12). The matrices
V =[vta], F=[ fta] and G=[gta] represent smooth surfaces for trend and modulation along age
and time. We model them by relatively many tensor products of B-splines and tune smoothness
with difference penalties.

Figure 3 shows a portion (rank 9) of a full cubic tensor product B-spline basis. This figure is
presented only to give a qualitative idea of the basis. In reality the density of the tensor product
splines is two times larger (in both directions) than shown. Each tensor product has its own
coefficient, which scales its height.

Tensor product B-spline bases can produce very general surfaces, however, one difficulty in
using such a basis is the choice of the number and the placement of the tensor products in the
indexing plane. To avoid a difficult numerical optimization, the P-spline approach takes two steps
toward smoothness: (1) A relatively rich (gridded) tensor product basis is used (usually such
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Figure 3. Portion of a tensor product B-spline basis.
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Plate 1. Illustration of the one-dimensional modulation model data as applied to female (ages 51–100)
respiratory deaths. Upper panel: observed counts (thick gray line), model estimates (thin black line)
and trend (red broken line). Lower panel: log of counts divided by the trend (thick gray line), seasonal

component (thin black line) and modulation amplitude (red broken line).
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that K ×L is manageable, say smaller than 1000) to purposely over-fit the estimated coefficient
surfaces. (2) Penalties are imposed on the rows and columns of the coefficient matrix, such that the
influence of each penalty is regulated by its own positive tuning parameter, �. Hence smoothing
is anisotropic.

Let B=[bt j ] be the T × J B-spline basis on the time domain, which we used in the one-
dimensional model. Let B̆=[b̆ak] be an A×K basis, but defined on the age domain. Let A, B
and C be the J×K matrices of tensor product coefficients for V , F and G. Then we can express
(in a model without exposures)

V = BAB̆ ′, F= BBB̆ ′, G= BCB ′ (13)

with V =[vta], F=[ fta], G=[gta], and the model as

log(M)= BAB̆ ′+CBBB̆ ′+SBCB ′ (14)

where M=[�ta], C=diag{cos(�t)} and S=diag{sin(�t)}) as for the one-dimensional model.
Penalties are applied to the rows and the columns of A, B and C. Let D be the (J−2)× J

matrix that forms second differences of J -vectors (such as D in the one-dimensional model), and
D̆ the (K −2)×K matrix that forms second differences of K -vectors. The penalty is

pen=�1‖DA‖F+�2‖DB‖F+�2‖DC‖F+ �̆1‖AD̆′‖F+ �̆2‖BD̆′‖F+ �̆2‖CD̆′‖F (15)

where ‖X‖F indicates the Frobenius norm of X , i.e. the sum of the squares of all its elements.
The penalized deviance is

d∗(Y ;M)=2
∑

t

∑

a
yta log(yta/�ta)+pen (16)

The model has the structure of a generalized linear array model (GLAM) [2], an extension of
generalized linear models to tensor product structures for data in multi-dimensional arrays. GLAMs
offer very efficient computation [2, 13]. In our application, a speed improvement by at least a
factor 20 was obtained, compared with the more traditional approach, expanding the bases with
Kronecker products. We do not repeat the details of GLAM, but to illustrate the basic principle we
sketch the core, using a simplified example, a model with only a smooth trend (and no seasonal
component), that is, log M=V = BAB̆ ′ and penalties on A as given in (15).

An equivalent vectorized (i.e. column-stacked) form is

log(�)=vec(M)=(B̆⊗B)�=(B̆⊗B)vec(A) (17)

a GLM with basis B̆⊗B. The penalties on columns and rows of the K ×L coefficient matrix A
are translated into equivalent penalties on �:

�′P�=�1‖DA‖F+ �̆1‖AD̆′‖F=�′[�1( Ĭ ⊗D′D)+ �̆1(D̆
′ D̆⊗ I )]� (18)

where I is a K ×K identity matrix and Ĭ an L×L identity matrix. The scoring algorithm solves

[(B̆⊗B)′W̃ (B̆⊗B)+P]�=(B̆⊗B)′(y− �̃)+(B̆⊗B)′W̃ (B̆⊗B)�̃ (19)

repeatedly, where W =diag(�). The essence of a GLAM is that it computes (B̆⊗B)′W̃ (B̆⊗B) in
a very efficient way, avoiding the Kronecker products. However, it solves the same equations with
penalties on the vector �.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:3430–3441
DOI: 10.1002/sim



3438 P. H. C. EILERS ET AL.

The seasonal components can be handled in a similar way and added to the model, stacking
�=vec(B) and �=vec(C) under � and adding bases B̆⊗(CB) and B̆⊗(SB). This requires careful
organization. For practical computation of the penalty matrices, it is in fact easier to rotate the
matrices (rows for age and columns).

In a birds-eye view, one can simply approach a GLAM as a black box, allowing specification
of a two-dimensional model similar in (14) with the corresponding penalties similar in (15), and
returning a fitted model. That is also the way our software (written in R [14] and available on
request) presents itself to the user.

Large values of � enforce smoothness, whereas small values encourage roughness in either the
row or column orientation. Similar in the one-dimensional case, we search for optimal values of
�’s. Over-dispersion strikes here too, and we take the same countermeasures: excluding December–
March from the fit and monitoring QIC instead of AIC.

We implement the search in a greedy way: each of the four �’s is changed in turn, by one step
up and one step down on the grid. The step that gives the largest improvement, in QIC is kept. If
there is no improvement, the current value is kept.

5. APPLICATION

For the female death counts due to respiratory diseases, all three surfaces (intercept, sine- and
cosine-varying coefficients) were constructed on the time–age grid using a basis with (10+3)×
(10+3) tensor products. �’s could take on values on a grid with width 0.2 (on the 10 base log scale)
and were changed in turn to test for possible downhill moves. Result: �1=10, �2=1; �̆1=100.6

and �̆2=104.
The effective dimension of the model is 167.8, much smaller than the number of model param-

eters (3×132=507), showing the effect of the penalties. Plate 2 shows the varying intercept term
in the upper left panel. In the two following panels, the cosine- and sine-varying coefficients are
transformed into amplitude and phase surfaces. The phase surface has been further mapped from
the interval (0, 2�) into (0, 365) and thus has a direct interpretation with the days in a year: January
1 (1)–December 31 (365). The final image shows the Pearson residuals. Their range illustrates the
amount of over-dispersion. Large positive residuals, corresponding to flu epidemics, show up as
bright vertical stripes. Interestingly, cohort effects are clearly visible as diagonal stripes running
from the lower left to the upper right of the image. The marginal averages of amplitude and phase
for age and time are depicted in Figure 4.

We can see in the upper left panel of Plate 2 that the number of deaths increases with age,
peaking at about age 85, resembling closely the typical distribution of deaths over age. Over time
(i.e. on the horizontal axis), two interesting features can be recognized, which can be traced back
to two different developments: first, the number of deaths is increasing at ages 65 and higher.
Most likely, this is the consequence of a compositional change: the number of women aged 65
and older increased from 8.8 million in 1959 to more than 20 million in 1998 (own calcula-
tions, based on—partly adjusted—official data as published in the Human Mortality Database,
http://www.mortality.org). At the same time, we can see that the number of deaths
from respiratory diseases below age 65 remained relatively constant or even decreased—despite a
population growth of more 63 per cent of that age group (44�age�65) between 1959 and 1998.
This can serve as an indicator for the progress made against mortality in general by shifting deaths
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Figure 4. Marginal plots of the amplitude and phase of the seasonal effects: (a) marginal
amplitude profile over time; (b) marginal amplitude profile over age; (c) marginal phase profile

over time; and (d) marginal phase profile over age.

to a later age and possibly, more specifically, successful efforts to prevent deaths from respiratory
mortality.

The upper right panel depicts the changes in the seasonal amplitude over age and time. We
are not sure whether the sudden increase in seasonality in the early 1970s can be traced back to
data problems (the data for 1972 contained not the whole population but a 50 per cent random
sample) or the impact of smaller influenza epidemics in the winters 1971/1972 and 1972/1973
[15]. In general, we can see that the annual fluctuations decreased until the mid-1970s. Since then,
no more improvement has been made and one can even detect signs for increasing seasonality at
ages below 80. Above age 80, seasonality continuously decreased since the 1970s. Similar patterns
have been found previously in the one-dimensional case for corresponding age-groups [6, 16].
Seretakis et al. [17] discovered a comparable development for coronary heart disease. According
to that article, the decrease and the subsequent increase can be traced back, first, to the spread
of central heating, which helped reducing excess winter mortality and dampened the seasonal
amplitude. The increased usage of air conditioning since the mid-1970s may have helped to reduce
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absolute mortality during summer, resulting in larger annual fluctuations in mortality—despite a
lower overall level in mortality.

The lower left panel indicates the day of the year when mortality peaked. This timing varied
throughout our 40 years of observation period. Our results indicate that the peak occurred between
the end of January (30 days) and sometime before the middle of March. We interpret these findings
to be less an outcome of technological advance as we did for the amplitude but rather the varying
onset of cold spells triggering respiratory infections.

6. DISCUSSION

Our modulation model for incidence tables allows detailed quantitative description of many aspects
of seasonality. The intercept surface captures the overall trend in event counts, as a function of year
and age. After conversion to polar coordinates, the modulation surfaces tell us how the relative
strength of seasonality changes with year and age, as well as changes in the phase, i.e. the time
of the year, in which peaks occur. This can be a powerful tool for detailed epidemiological or
demographic analysis. In this paper we studied mortality data, but of course the model can be
applied to other types of events, such as disease incidence.

Because the estimated surfaces are smooth by design, they allow the computation of derivatives,
with respect to age or time, for specialized research in which rates of change are of interest.

The combination of tensor products and discrete penalties is very effective for multi-dimensional
smoothing. One can imagine extensions adding gender, with shared seasonal components, but
differing trends for men and women. One can also envision extensions to more dimensions. The
U.S. death counts can be subdivided by state. This gives the opportunity to introduce east–west or
north–south spatial location for building a three-dimensional incidence table. A really challenging
extension is to build four-dimensional models, in which surfaces live in the longitude–latitude–
time–age space.

On the other hand, it will be worthwhile to study simplifications of the two-dimensional model.
If a surface shows little interaction between time and age, it will be easier to understand and more
parsimonious to be described by means of two additive functions, one for age and the other for
time. This would result in models that contain combinations of one-dimensional and tensor-product
P-spline components.
The Poisson model implies that the variance is equal to the expected value. One almost never

observes this in real-life data, where over-dispersion is very common. Our data are no exception,
showing ratios of variance to mean of the order of 10 to over 100. This is a serious obstacle to
automatic tuning of penalties. In general, over-dispersion will then lead to surfaces that are more
flexible than one would expect from prior knowledge.

Our solution to over-dispersion has two components: elimination of the most extreme months
(December–March) and the use of quasi-likelihood. Eliminations of specific months is done by
zero/one weights. The remaining months carry enough information to reliably estimate the model,
although essentially the ‘summer valleys’ now determine the amplitude of the seasonal component
and the assumption of a sinusoidal pattern is critical. We expect that our estimates of the winter
spikes will be improved this way, because they are not influencing seasonality estimates. A possible
refinement would be to model spikes as ‘shocks’: a smooth age distributions of variable shape
and size for every individual month [18]. This is not of primary importance in the context of this
paper; hence, we do not pursue this topic further here.
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Plate 2. Image plot of the varying intercept term or overall trend (upper, left); amplitude and phase (month)
resulting from the two-dimensional seasonal effects, (upper, right) and (lower, left), respectively; and the

Pearson residuals (lower, right).

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27(17)
DOI: 10.1002/sim



MODULATION MODELS FOR SEASONAL TIME INCIDENCE DATA 3441

Our use of quasi-likelihood assumes that the variance is proportional to the mean, with a ratio
that is estimated from the data. Other options are available. The first is to use the negative binomial
distribution [19]. An interesting second option is to introduce ’individual deviance effects’, one for
each cell of the incidence table [20]. This leads to more parameters than there are observations,
but a ridge penalty (which is optimized) constrains the size of the effects allowing identification.
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